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Abstract Stratified hydrostatic fluids have linear internal gravity waves with different phase speeds and vertical
profiles. Here a simplified set of partial differential equations (PDE) is derived to represent the nonlinear
dynamics of waves with different vertical profiles. The equations are derived by projecting the full nonlinear
equations onto the vertical modes of two gravity waves, and the resulting equations are thus referred to here
as the two-mode shallow water equations (2MSWE). A key aspect of the nonlinearities of the 2MSWE is
that they allow for interactions between a background wind shear and propagating waves. This is important
in the tropical atmosphere where horizontally propagating gravity waves interact together with wind shear
and have source terms due to convection. It is shown here that the 2MSWE have nonlinear internal bore
solutions, and the behavior of the nonlinear waves is investigated for different background wind shears. When
a background shear is included, there is an asymmetry between the east- and westward propagating waves.
This could be an important effect for the large-scale organization of tropical convection, since the convection is
often not isotropic but organized on large scales by waves. An idealized illustration of this asymmetry is given
for a background shear from the westerly wind burst phase of the Madden–Julian oscillation; the potential
for organized convection is increased to the west of the existing convection by the propagating nonlinear
gravity waves, which agrees qualitatively with actual observations. The ideas here should be useful for other
physical applications as well. Moreover, the 2MSWE have several interesting mathematical properties: they
are a system of nonconservative PDE with a conserved energy, they are conditionally hyperbolic, and they are
neither genuinely nonlinear nor linearly degenerate over all of state space. Theory and numerics are developed
to illustrate these features, and these features are important in designing the numerical scheme. A numerical
method is designed with simplicity and minimal computational cost as the main design principles. Numerical
tests demonstrate that no catastrophic effects are introduced when hyperbolicity is lost, and the scheme can
represent propagating discontinuities without introducing spurious oscillations.
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1 Introduction

The nonlinear dynamics of waves are important in many physical applications involving interactions across
different space and time scales. Energy can be transported upscale or downscale as in turbulence and wave–
mean interaction theory; the properties of waves can change depending on the background state through which
they propagate; and some phenomena are inherently multiscale and involve a combination of these effects
[1–4].

The tropical atmosphere abounds with examples of nonlinear and multiscale effects of waves on many
different scales, including the quasi-biennial oscillation [5], the Madden–Julian oscillation [6], convectively
coupled equatorial waves [7,8], squall lines and other mesoscale convective systems [9], and density currents
and gravity waves generated by convective clouds [10–12]. For most of these examples, hydrostatic balance
is a reasonable approximation because the aspect ratio (vertical length scale over horizontal length scale) is
small. This corresponds to horizontal spatial scales of more than 100 km and time scales of more than 1 h. On
these scales, waves interact nonlinearly with background wind shear and with source terms due to convection.
In a growing body of literature, these effects are shown to be mostly captured by two vertical Fourier modes
[13–23]. While the important vertical modes have been identified, and while they have been used in many
linear studies, the nonlinear interactions among the vertical modes have been largely ignored in simple models.

Here a set of simplified partial differential equations (PDE) is derived and analyzed for the nonlinear
interactions between different vertical modes. The derivation is carried out by projecting the full equations
of motion, the nonlinear hydrostatic Boussinesq equations, onto the vertical modes of two gravity waves.
The projected equations are thus referred to here as the two-mode shallow water equations (2MSWE). This
derivation is carried out in Sect. 2.

The 2MSWE have several interesting mathematical properties: they are a system of nonconservative PDE
with a conserved energy, they are conditionally hyperbolic, and they are neither genuinely nonlinear nor linearly
degenerate over all of state space. Theory and numerics are developed to illustrate these features in Sects. 3–5,
and these features will be important in designing the numerical scheme.

A simple numerical method for the 2MSWE is presented in Sect. 3. The scheme is designed with simplicity
and minimal computational cost as the main design principles. The idea is to split the equations into conservative
and nonconservative parts and to solve each part with an appropriate method. The numerical scheme is tested
with emphasis on conditional hyperbolicity (Sect. 4) and breaking waves that resemble internal bores (a.k.a.
density currents or gravity currents) [24–27] (Sect. 5).

An important aspect of the nonlinearities of the 2MSWE is that they allow for the effects of a background
wind shear interacting with propagating waves. This is emphasized in Sects. 5 and 6. In Sect. 6, it is shown that
a background wind shear causes asymmetries between the westward- and eastward-propagating waves. This
could have important implications for the large-scale organization of tropical convection, since waves propa-
gating away from clouds can suppress or favor the formation of new convective clouds [10,11]. Furthermore,
the background wind shear is also important for convection because it determines whether convection will
be unorganized and scattered or whether it will become organized into a squall line or mesoscale convective
system [28,29]. In other work, in order to represent these important effects of background wind shear, the
authors are currently adding the nonlinear effects of the 2MSWE to a simplified model for organized tropical
convection [18–23]. That model, which is called the multicloud model, includes the effects of water vapor and
clouds through additional equations and nonlinear interactive source terms. The 2MSWE can be used in the
multicloud model as a nonlinear dynamical core, since its dynamical core was originally linear for simplicity.
Results with the multicloud model with the effect of background shear will be reported elsewhere in the near
future.

2 Derivation of the two-mode shallow water equations (2MSWE)

The setup considered here is a hydrostatic Boussinesq fluid with a background stratification that is linear with
height. The fluid is bounded above and below by rigid lids where free slip boundary conditions are assumed:
w|z=0,H = 0. In this situation there is an infinite set of linear gravity waves with phase speeds c j and vertical
profiles sin( j z) for j = 1, 2, 3, . . . [1]. The waves c j are decoupled from all waves ck (k �= j) for the case of
linear dynamics, but the waves become coupled in the case of nonlinear dynamics. In this section nonlinear
effects are included to describe the interactions between the waves c j and ck (k �= j). Here c1 and c2 are chosen
because of their relevance to applications in atmospheric science [13–23]. The PDE for these interactions are
derived by projecting the full nonlinear equations onto the dynamics for only the two waves c1 and c2.
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Table 1 Model parameters and scales

Parameter Derivation Value Description

β 2.3 × 10−11 m−1s−1 Variation of Coriolis parameter with latitude
θref 300 K Reference potential temperature

g 9.8 m/s2 Gravitational acceleration
H 16 km Tropopause height

N 2 (g/θref )dθbg/dz 10−4 s−2 Buoyancy frequency squared
c N H/π 50 m/s Velocity scale

L
√

c/β 1500 km Equatorial length scale
T L/c 8 h Equatorial time scale

ᾱ H N 2θref/(πg) 15 K Potential temperature scale
H/π 5 km Vertical length scale
H/(πT ) 0.2 m/s Vertical velocity scale

c2 2500 m2 s−2 Pressure scale

Hydrostatic Boussinesq equations. Consider the equations for a rotating hydrostatic Boussinesq fluid [1–3]:

DU
Dt

+ f (y)U⊥ = −∇ P

∇ · U + ∂W

∂z
= 0

∂ P

∂z
= g

�

θref

D�

Dt
+ W

dθbg

dz
= 0, (1)

where the material derivative is

D

Dt
= ∂

∂t
+ U · ∇ + W

∂

∂z
.

Here the horizonal velocity is U = (U (x, y, z, t), V (x, y, z, t)), and ∇ is the horizonal gradient operator:
U · ∇ = U∂x + V ∂y . The model parameters and scales are given in Table 1. With the background potential
temperature θbg(z) and the reference potential temperature θref = 300 K, the total potential temperature of
this model is

θtotal = θref + θbg(z) + �(x, y, z, t).

The pressure P has been scaled by a reference density so its units are not the typical pressure units. The
term f (y)U⊥ represents the Coriolis force, where U⊥ = (−V, U ). In what follows, the equatorial β-plane
approximation will be used [1,2]. This approximation replaces f (y) with the first two terms of its Taylor
expansion at the equator (y = 0). Since f (y = 0) = 0, this takes the form f (y) ≈ βy, where the value of
β is used here to define reference length and time scales as shown in Table 1. Although this special form of
f (y) is used here, the ideas in this paper apply for a general Coriolis parameter f (y) as well.

Using the scales defined in Table 1, (1) are nondimensionalized to give

DU
Dt

+ yU⊥ = −∇ P

∇ · U + ∂W

∂z
= 0

∂ P

∂z
= �

D�

Dt
+ W = 0. (2)
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Fig. 1 Vertical profiles for the first few modes of velocity (a) and potential temperature (b), as described in (3) and (5)

The fluid is bounded above and below by rigid lids at the earth’s surface (z = 0) and the top of the
troposphere (z = H = 16 km). The boundary condition at the surface is W = 0, and the boundary condition
at z = H is also W = 0. While the atmosphere has no such rigid lid at z = H , several studies have shown that
this is a reasonable approximation [10,15,18,19,30].

Vertical basis functions. There is a natural set of vertical basis functions for (2). The basis functions can be
obtained by linearizing the equations, using separation of variables for the z-dependence, and solving the
resulting Stürm–Liouville problem [1]. Besides their relevance as vertical eigenfunctions for the equations of
motion, several of the basis functions also appear prominently in the tropical atmosphere due to cloud types
associated with certain vertical modes [13–23]. These basis functions take the form of sinusoids:

C0(z) = 1

C j (z) = √
2 cos( j z), S j (z) = √

2 sin( j z), j = 1, 2, 3, . . . (3)

where the upper lid is located at z = π in nondimensional units. The inner product is then defined as

〈F(z), G(z)〉 = 1

π

π∫

0

F(z)G(z)dz (4)

so that the S’s and the C’s are orthonormal bases: 〈Si , S j 〉 = δi j and 〈Ci , C j 〉 = δi j . The model variables are
expanded as

U(x, y, z, t) =
∞∑
j=0

u j (x, y, t)C j (z), �(x, y, z, t) =
∞∑
j=1

θ j (x, y, t) j S j (z)

P(x, y, z, t) =
∞∑
j=0

p j (x, y, t)C j (z), W (x, y, z, t) =
∞∑
j=1

w j (x, y, t)S j (z). (5)

Note that the convention here is to expand � in the basis j S j (z), not S j (z). This vertical structure is illustrated
for the first few modes in Fig. 1.

Vertical projection of linearized equations. Before dealing with the nonlinear equations (2), the linearized
version is considered to illustrate the vertical projection in a simpler setting. A trivial background state U =
W = P = � = 0 is used for the linearization. If the expansion (5) is then inserted into the linearized version
of (2), and if the equations are projected onto each mode j = 0, 1, 2, . . . using the inner product (4), then the
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variables for each mode j solve a set of equations that is decoupled from the other modes. For j = 0 (the
barotropic mode), the equations that arise are the rotating linear 2D incompressible fluid equations:

∂u0

∂t
+ yu⊥

0 + ∇ p0 = 0

∇ · u0 = 0 (6)

For each other mode j = 1, 2, 3, . . . (the baroclinic modes), the equations that arise are the rotating linear
shallow water equations:

∂u j

∂t
+ yu⊥

j − ∇θ j = 0

∂θ j

∂t
− 1

j2 ∇ · u j = 0, j = 1, 2, 3, . . . , (7)

where the wavespeed for the j th set of equations is c j = 1/j in nondimensional units. The hydrostatic and
continuity equations of (2) give the relations

θ j = −p j , w j = −1

j
∇ · u j , j = 1, 2, 3, . . . (8)

Eqs. (6) and (7) have a rich variety of linear waves (see [1] for more details). While the equations have been
written down here for an equatorial β-plane, the projection can also be carried out for a general Coriolis
parameter f (y).

Vertical projection of nonlinear equations. Now we return to the nonlinear hydrostatic Boussinesq equations
in (2). Observations and simulations show that the first and second baroclinic modes are the most important
for many phenomena in the tropical atmosphere [13–23]. Therefore, the model variables are assumed to have
the truncated form

U = u1C1 + u2C2 � = θ1S1 + θ22S2

W = −∇ · u1S1 − 1

2
∇ · u2S2 P = −θ1C1 − θ2C2. (9)

When (2) are projected onto the first and second baroclinic modes, the result is the rotating two-mode shallow
water equations (2MSWE):⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂u1

∂t
+ yu⊥

1 − ∇θ1 = − 1√
2

[
u1 · ∇u2 + u2 · ∇u1 + 2u2∇ · u1 + 1

2
u1∇ · u2

]

∂θ1

∂t
− ∇ · u1 = − 1√

2

[
2u1 · ∇θ2 − u2 · ∇θ1 + 4θ2∇ · u1 − 1

2
θ1∇ · u2

]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u2

∂t
+ yu⊥

2 − ∇θ2 = − 1√
2

[u1 · ∇u1 − u1∇ · u1]

∂θ2

∂t
− 1

4
∇ · u2 = − 1

2
√

2
[u1 · ∇θ1 − θ1∇ · u1]

(10)

Energy Conservation. Define the energy density

E = 1

2

(|u1|2 + |u2|2 + θ2
1 + 4θ2

2

)
. (11)

One can show that this is a conserved energy for smooth solutions of (10):

∂E
∂t

+ ∇ · F = 0, F = −θ1u1 − θ2u2 + 1√
2
[u1 · u2]u1 + 1

2
√

2
|u1|2u2 + √

2θ1θ2u1 − 1

2
√

2
θ2

1 u2.

(12)

The form of this flux illustrates that the nonlinear terms in (10) can lead to energy exchanges between modes
1 and 2.
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Two-mode SWE above the equator. The main focus of this paper is on the nonlinear wave interactions between
different vertical modes. To illustrate the physical and numerical issues in the simplest possible setting, the
2MSWE will be studied for the rest of this paper in a 1D setting above the equator (y = 0). This will
eliminate the dispersive equatorial waves and leave only 1D non-dispersive gravity waves. In this setup above
the equator, the Coriolis parameter f (y) vanishes, and the north–south y-dependence of the flow and the
north–south velocities v j are set to zero. With these simplifications, the 2MSWE (10) become

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂u1

∂t
− ∂θ1

∂x
= − 3√

2

[
u2

∂u1

∂x
+ 1

2
u1

∂u2

∂x

]

∂θ1

∂t
− ∂u1

∂x
= − 1√

2

[
2u1

∂θ2

∂x
− u2

∂θ1

∂x
+ 4θ2

∂u1

∂x
− 1

2
θ1

∂u2

∂x

]

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂u2

∂t
− ∂θ2

∂x
= 0

∂θ2

∂t
− 1

4

∂u2

∂x
= − 1

2
√

2

[
u1

∂θ1

∂x
− θ1

∂u1

∂x

]

(13)

These will be the equations used in the rest of this paper. This system is more mathematically tractable than
the 2D version in (10), and, as will be shown in subsequent sections, it still allows for interesting interactions
between the different vertical modes.

Note that, in this 1D setting, the barotropic mode must be a constant due to the incompressibility constraint:
0 = div u0 = ∂u0/∂x . In 2D, however, the barotropic mode is active. The 2D case of interactions between the
barotropic mode and the first baroclinic mode was studied in [31], and a numerical scheme for those equations
was designed in [32,33].

Comparison with two-layer shallow water equations. Traditionally, the simple models used for studying
stratification, shear, and internal waves in the atmosphere and ocean are the multi-layer shallow water equations
(SWE) [2,34]. The two-layer SWE and the 2MSWE (13) have several important differences and similarities,
both physical and mathematical. In terms of their physical properties, they are quite different. The two-layer
SWE describe flows with two layers of constant densities (ρ1 and ρ2), and the dynamical variables are the
velocity in each layer (u1(x, t) and u2(x, t)) and the thickness of each layer (h1(x, t) and h2(x, t)). Since the
density has no horizontal variations within each layer, the model does not represent thermodynamic processes
(see [35] for a discussion of layer models that include thermodynamic effects). In contrast, the 2MSWE include
thermodynamic effects through the potential temperature (θ1(x, t) and θ2(x, t)). In addition, the two-layer SWE
include a free upper surface, and the vertical structure of the flow consists of the barotropic mode and the first
baroclinic mode. In contrast, the 2MSWE have a rigid upper lid, and the vertical structure of the flow consists
of the first and second baroclinic modes (the barotropic mode is inactive in 1D in the presence of a rigid upper
lid).

In terms of their mathematical form, the 2MSWE and the two-layer SWE have several similarities: both
are systems of nonconservative PDE in four variables, both have a conserved energy, both are conditionally
hyperbolic, and both have eigenstructures that are analytically intractable. One difference is in the behavior
of nonlinear waves. The baroclinic mode of the two-layer SWE is like all of the modes of the 2MSWE in that
it is neither genuinely nonlinear nor linearly degenerate over all of phase space. The barotropic mode of the
two-layer SWE, however, is genuinely nonlinear.

There are also models for compressible two-phase flow that share many of these mathematical properties.
See, for instance [36,37] and references therein.

3 Numerical methods

In this section, a numerical method for the 2MSWE is proposed, and a convergence test is carried out to verify
second-order convergence. The 2MSWE (13) have the following properties that must be considered when
designing a numerical scheme:
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– They are nonconservative, i.e., they take the form

∂u
∂t

+ A(u)
∂u
∂x

= 0, (14)

where u = (u1, θ1, u2, θ2)
T and A(u) is a matrix that cannot be written as ∂F/∂u for any flux F.

– The energy in (11) plays the role of a convex entropy function, and an entropy/entropy–flux pair (	,
)
is formed by identifying 	 = E and 
 = F from (12) [38,39].

– They are conditionally hyperbolic, i.e., hyperbolic only for certain values of u. For some values of u, the
matrix A(u) has complex eigenvalues.

– The eigenstructure of A cannot be written down in a simple analytic form.
– They are neither genuinely nonlinear nor linearly degenerate over all of phase space, i.e., smooth waves

can break and become discontinuous, but they do not necessarily break.

These properties will be described in more detail in Sects. 4 and 5.
Because of these properties, designing a numerical scheme is a challenge. Since the equations are non-

conservative, the analytical tools for conservations laws, such as Rankine–Hugoniot jump conditions, do not
have unambiguous definitions; and standard numerical methods for conservation laws cannot be readily used
[39]. Analysis of nonconservative PDE is an active area of research (see, for instance [40–43] and references
therein), and some methods have been developed to extend Riemann solver-based numerical methods for
conservation laws to nonconservative systems (see [44,45] and references therein). However, such methods
are difficult to apply here because the eigenstructure of this system is not accessable analytically. For these
reasons, the following simple, computationally inexpensive scheme is proposed.

In short, to solve (13) numerically, the equations are split into three parts: a conservative part, a noncon-
servative part, and an external forcing part:

∂u
∂t

+ ∂

∂x
F(u) = −Anc(u)

∂u
∂x

+ S,
∂F
∂u

= Ac. (15)

The conservative part is solved using a non-oscillatory central scheme [46,47]; the nonconservative part is
solved using the method of lines (see [39] and references therein) with centered differences,

∂u

∂x

∣∣∣∣
x=x j

≈ u j+1 − u j−1

2�x
, (16)

for the spatial derivatives and second-order Runge–Kutta to advance in time; and the external forcing terms
will be solved using a second-order Runge–Kutta scheme. Strang splitting is used to combine these three parts
into a second-order scheme [39,48].

The splitting A = Ac + Anc in (15) can be done in many ways. The choice used here is

∂u1

∂t
+ ∂

∂x

[
− θ1 + 3√

2
u1u2

]
= 3

2
√

2
u1

∂u2

∂x
+ Su1

∂θ1

∂t
+ ∂

∂x

[
− u1 + √

2u1θ2 − 1√
2

u2θ1

]
= − 1√

2

[
2θ2

∂u1

∂x
+ 1

2
θ1

∂u2

∂x

]
+ Sθ1

∂u2

∂t
+ ∂

∂x

[
− θ2

]
= Su2

∂θ2

∂t
+ ∂

∂x

[
− 1

4
u2

]
= − 1

2
√

2

[
u1

∂θ1

∂x
− θ1

∂u1

∂x

]
+ Sθ2 (17)

Note that three nonlinear terms appear in the flux on the left-hand side, and the other nonlinear terms appear
on the right-hand side. This splitting A = Ac + Anc has the following properties:

– The conservative advection matrix Ac(u) has eigenvalues ± 1
2 , 1√

2
u2 ±

√
1 + 2u2

2 − √
2θ2, so that the time

step of the central scheme can be easily chosen to meet the CFL condition, and the conservative part is
hyperbolic for θ2 < 1/

√
2 (which is ≈ 11 K in dimensional units).

– The nonconservative advection matrix Anc(u) is nilpotent, i.e., the linear wavespeeds of Anc(u) are all zero
for all u. This property seems to justify using centered differences in (16) instead of upwind differences.
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Fig. 2 Comparison of “exact” simple wave solution with numerical solution at time t = 2 h for (a) 32, (b) 64, (c) 128, and
(d) 256 grid points
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Fig. 3 Convergence test for numerical method compared to an “exact” simple wave solution at time t = 2 h as in Fig. 2. Grids
with 32, 64, . . . 4096 points were used for the test. The plots show the L1 error in (a) u1 and (b) u2 as lines with circles, and a solid
line shows the slope of theoretical second-order convergence. The numerical method demonstrates second-order convergence in
each of the variables

To test for second-order convergence of this numerical method, a convergence test was carried out with
the numerical solution compared to an “exact” simple wave solution. Simple waves are discussed in Sect. 5,
and the numerical procedure used to calculate the “exact” solution is described in Appendix A. The simple
wave used for the convergence test propagates eastward at 50 m/s with a background state of θ1 = 4 K,
u1 = u2 = θ2 = 0. The initial condition is nearly sinusoidal, and the wave breaks at time t = 2.15 h, but
the exact and numerical solutions are compared at time t = 2.0 h, just before the wave breaks. This is shown
in Fig. 2. Grid sizes from 32 to 4,096 points were tested, and Fig. 2 shows a comparison of the exact and
numerical solutions for u1 for the cases with 32, 64, 128, and 256 grid points. The case with 256 grid points
seems to capture the wave well visually, whereas the cases with fewer grid points have notable discrepancies.
Figure 3 shows the results of the convergence test using the L1 error:

L1 error = 1

N

N∑
i=1

|unum(i�x, t) − uex(i�x, t)|, (18)

where N is the number of grid points, unum is the numerical solution, and uex is the “exact” solution. The errors
in θ1 and θ2 (not shown) are indistinguishable from those of u1 and u2 in Fig. 3, respectively. Second-order
convergence is demonstrated in each of the variables.
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4 Hyperbolicity

In this section the linear waves of the 2MSWE are studied for different background states, and it is shown that
the equations can become non-hyperbolic in some situations. Illustrations are given for both the hyperbolic
travelling waves and the non-hyperbolic overturning waves. Then, using the nonlinear equations, hyperbolicity
is examined numerically by forcing the system into non-hyperbolic states using imposed source terms. This
test shows that the numerical scheme can handle non-hyperbolic states in a reasonable way.

4.1 Linear hyperbolic waves

If the 2MSWE (13) are linearized about the constant solution

u = (u1, θ1, u2, θ2)
T = (ū1, θ̄1, ū2, θ̄2)

T ,

the resulting linearized equations are

ut + A(ū)ux = 0, where A(ū) =

⎛
⎜⎜⎜⎜⎜⎝

3√
2

ū2 −1 3
2
√

2
ū1 0

−1 + 2
√

2θ̄2 − 1√
2

ū2 − 1
2
√

2
θ̄1

√
2ū1

0 0 0 −1

− 1
2
√

2
θ̄1

1
2
√

2
ū1 − 1

4 0

⎞
⎟⎟⎟⎟⎟⎠

. (19)

Linear equations of this form have only nondispersive solutions (see Chap. 5 of [1]), which take the form of
travelling wave solutions u(x, t) = r f (x − λt). If this ansatz is inserted into (19), an eigenvalue problem is
obtained for the wave speeds λ and the eigenvectors r:

[−λI + A(ū)]r = 0. (20)

Table 2 lists λ and r for several choices of ū. In general, ū2 and θ̄2 have a much stronger effect than ū1 and θ̄1.
The strongest effect occurs with θ̄2 = +2.5 K, for which the first baroclinic wave speeds decrease in magnitude
from ±50 to ±36 m/s. Notice that the eigenvector is either entirely in mode-1 or entirely in mode-2 unless
there is a mode-1 background state. This can be seen from the form of A(u) in (19).

Plots of the waves for a trivial background state ū1 = ū2 = θ̄1 = θ̄2 = 0 (corresponding to the first two
linear baroclinic equations in (7) in 1D, without rotation) are shown in Fig. 4. These are the first four waves
listed in Table 2. The mode-1 waves propagate at speeds of ±50 m/s, and the mode-2 waves propagate at
speeds of ±25 m/s.

4.2 Linear non-hyperbolic waves

Here it is shown that the 2MSWE are conditionally hyperbolic, i.e., they are hyperbolic in some regions of
phase space and non-hyperbolic in other regions. The system in (19) is hyperbolic if the 4 × 4 matrix A(ū) has
real eigenvalues and linearly independent eigenvectors. Finding the eigenvalues for the general matrix A(ū)
is not analytically tractable. Instead, the eigenvalues and eigenvectors of A(ū) are computed numerically for
a representative set of fixed background states. First consider four simple background states where only one
of (u1, u2, θ1, θ2) is nonzero:

1. u1 �= 0, u2 = θ1 = θ2 = 0. The eigenvalues are all real unless |u1| >
√

2/3 (41 m/s).
2. θ1 �= 0, u1 = u2 = θ2 = 0. The eigenvalues are all real unless |θ1| >

√
2 (21 K).

3. u2 �= 0, u1 = θ1 = θ2 = 0. The eigenvalues are all real.
4. θ2 �= 0, u1 = u2 = θ1 = 0. The eigenvalues are all real unless θ2 > 1/(2

√
2) (5 K).

(21)

These results suggest a sufficient condition for the 2MSWE system to lose hyperbolicity is that either the back-
ground shear |u1| or |θ1| becomes too large. Large jet shears from |u2|, however, will not affect hyperbolicity,
and neither will strongly negative θ2, but strongly positive θ2 will make the system lose its hyperbolicity.

When hyperbolicity is lost, at least one of the eigenvectors has a positive growth rate. Plots of the unstable
waves for the four cases in (21) are shown in Fig. 5. For large positive θ̄1, there is downward transport of cold
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Fig. 4 Linear waves of 2MSWE for the trivial background state ū1 = ū2 = θ̄1 = θ̄2 = 0. The waves have phase speeds of
(a) −50, (b) +50, (c) −25, and (d) +25 m/s. Solid contours denote positive anomalies of potential temperature and dashed
contours denote negative anomalies

Table 2 Linear waves of 2MSWE for different background states

Background state λ (m/s) Eigenvector r (nondim.)

ū1 (m/s) θ̄1 (K) ū2 (m/s) θ̄2 (K) u1 θ1 u2 θ2

0 0 0 0 −50.0 0.71 0.71 0 0
−25.0 0 0 0.89 0.45
+25.0 0 0 0.89 −0.45
+50.0 0.71 −0.71 0 0

+5 0 0 0 −50.3 0.71 0.71 −0.03 −0.03
−24.7 0.14 0.16 0.88 0.43
+24.7 −0.14 0.16 0.88 −0.43
+50.3 0.71 −0.71 0.03 −0.03

0 +5 0 0 −50.5 0.70 0.70 0.11 0.11
−24.1 −0.14 −0.07 0.89 0.43
+24.1 −0.14 0.07 0.89 −0.43
+50.5 0.70 −0.70 0.11 −0.11

0 0 +5 0 −47.0 0.66 0.76 0 0
−25.0 0 0 0.89 0.45
+25.0 0 0 0.89 −0.45
+54.0 0.76 −0.66 0 0

0 0 0 +2.5 −36.4 0.81 0.59 0 0
−25.0 0 0 0.89 0.45
+25.0 0 0 0.89 −0.45
+36.4 0.81 −0.59 0 0

The first four columns show the background state used. The middle column lists the four linear wavespeeds λ. The last four
columns show the eigenvector r corresponding to each wavespeed λ
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(a) θ̄1 = +30 K, (b) θ̄1 = −30 K, (c) θ̄2 = +10 K, and (d) ū1 = +50 m/s. Solid contours are positive anomalies of
potential temperature and dashed contours are negative anomalies

Table 3 Some sample points where hyperbolicity was lost in the simulation in Fig. 7

Location State Eigenvalues (m/s)
x (km) t (h) u1 (m/s) θ1 (K) u2 (m/s) θ2 (K)

950 25 8.4 6.5 2.8 3.1 43, 17, −28 ± 1.6i

400 44 19.3 6.6 –3.2 3.6 44, 8, −29 ± 8i

air and upward transport of warm air. This overturning circulation should lead to a more stable stratification.
Note that this unstable wave has its strongest amplitude at upper levels; this is because large positive θ̄1 leads
to a less stable stratification at upper levels and a more stable stratification at lower levels (see Fig. 1). For
similar reasons, large negative θ̄1 creates an instability at lower levels, as shown in Fig. 5b, and large positive
θ̄2 creates an instability at middle levels, as shown in Fig. 5c. Notice from (21) that for large negative θ̄2 the
2MSWE are hyperbolic, and there is a more stable stratification at middle levels. On the other hand, this case
of large negative θ̄2 also leads to a less stable stratification at the lowest and highest levels (see Fig. 1), but,
interestingly, the 2MSWE remain hyperbolic for this case. This is possibly due to the crude vertical resolution
of the 2MSWE, which cannot resolve a wave in the shallow unstably stratified layer that appears when θ̄2
takes large negative values. It would be interesting to see what would happen if more baroclinic modes were
retained. Also note that the unstable waves in Fig. 5 are all stationary, i.e., they all have zero phase speed. This
is not necessarily the case when more than one background state variable are not zero, as seen below in Table 3.
Finally, note that the dispersion relation for (19) is ω(k) = λk. Therefore, for the unstable waves in Fig. 5,
which grow exponentially in time, the smallest scales (largest k) have the fastest growth rates. In atmospheric
science, this type of behavior is seen, for instance, with conditional instability of the second kind (CISK) in
convergence-based convective parametrizations [3,49].

When two of ū1, θ̄1, ū2, θ̄2 are allowed to be nonzero at the same time, the hyperbolic region of state space
becomes harder to describe, as shown in Fig. 6. In these plots, hyperbolic regions (labelled as “hyp.”) and
non-hyperbolic regions (labelled as “non-hyp.”) are separated by the solid curves. While large values of |u1|,
|θ1|, and θ2 tend to cause non-hyperbolicity, large values of |u2| and strongly negative θ2 tend to maintain
hyperbolicity. An example of the complexity of the hyperbolic region is the case of Fig. 6e with nonzero ū1
and θ̄2. In that case some hyperbolic regions appear for large values of |u1| and values of θ2 in the range ≈
5–7 K.
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and θ1

Since the shear and stratification determine the hyperbolicity of the 2MSWE, one might expect there to
be a Richardson number criterion for hyperbolicity. The Richardson number is the ratio of the stratification to
vertical wind shear squared [1,3]:

Ri = N 2
total

(∂U/∂z)2 , N 2
total = g

θref

∂θtotal

∂z
. (22)



Nonlinear dynamics of hydrostatic internal gravity waves 419

With the truncated vertical structure of the 2MSWE, a Richardson number could be defined as

Ri = f (θ1, θ2)

g(u1, u2)
,

where f and g are functions to be determined. However, given the results in this section, it is not clear how
f and g should be defined. Ultimately the hyperbolicity of the 2MSWE is determined by the roots of the
characteristic polynomial of A(ū) of (19):

λ4 − √
2u2λ

3 + 1

4

(
−5 + 8

√
2θ2 − 2u2

1 − 6u2
2

)
λ2

+ 1

2
√

2

(
−2

√
2u1θ1 + u2 + 3u2

1u2

)
λ + 1

8

(
2 − θ2

1 − 4
√

2θ2 − 3u2
1 + 6

√
2u2

1θ2 + 3u2
2

)
.

This polynomial, though, is no more analytically tractable than an analytic Richardson number criterion.
Nevertheless, the results in this section suggest empirical conditions for hyperbolicity that are physically
intuitive.

4.3 Forcing the system into non-hyperbolic states

If the system enters a state (u1, θ1, u2, θ2) that is non-hyperbolic, it could potentially be problematic for the
numerical scheme. This might happen if source terms are included (e.g., the effects of water vapor and clouds
as in [18–23]) and the source terms become too strong. To test how the numerical scheme behaves when
non-hyperbolic states are reached, imposed source terms are used to force the system into non-hyperbolic
states. It is shown that the numerical scheme responds in a physically reasonable way.

The imposed forcing is chosen to represent condensational heating from deep convective and congestus
clouds, which are observed to directly force the first and second baroclinic modes, respectively (see [18] and
references therein). For simplicity, the forcing is assumed to be localized in space and periodic in time:

Sθ1(x, t) = H(t)a exp

(
− (x − x0)

2

2σ 2

)
, H(t) =

{
1 for mod (t, 12 h) < 4 h
0 for mod (t, 12 h) > 4 h

Sθ2(x, t) = 1

2
Sθ1 (23)

where the heating is centered in the middle of the domain at x0 = 1, 000 km, the standard deviation is
σ = 20 km, and the amplitude is a = 200 K/day ≈ 8 K/h. This is a typical heating rate for the deep convective
region of a squall line or mesoscale convective system [9,53].

The mode-1 and -2 heatings have the same strength when their vertical structures are considered, since the
basis functions for θ1 and θ2 are

√
2 sin(π z) and 2

√
2 sin(2π z), respectively. This heating is applied for 4 h

and then turned off for 8 h, and this process is repeated periodically for the simulation duration of 24 days. The
grid spacing is �x = 2 km on a 2,000 km-wide domain. The initial conditions are u1 = θ1 = u2 = θ2 = 0.

Figure 7a shows the time evolution of the total energy. Initially the energy evolves in a stair-step pattern,
increasing as the source terms are turned on and remaining constant while the source terms are turned off. The
stair-step pattern lasts less than 2 days, after which the system dissipates energy at the same time the forcing
pumps energy into the system. Figure 7b shows the time evolution of the domain-maximum of θ2. Note that
θ2 is bounded above by ≈ 6 K, which was the simple criterion for hyperbolicity given in (21). Figure 7c
shows a black square at each point (x, t) where hyperbolicity is lost. Non-hyperbolic states are common in this
simulation. The results in Fig. 7 suggest that the source terms force θ2 to increase until non-hyperbolic states
are reached, and the unstable states (as in Fig. 5) act to stabilize the system and bring it back to hyperbolic
states with θ2 < 6 K. The energy plot in Fig. 7a shows that the non-hyperbolic unstable waves do not cause
catastrophic problems for the numerical scheme, since the numerical solution does not grow without bound.
Note also that while the 2MSWE became non-hyperbolic, the conservative part of the numerical scheme is
always hyperbolic, since it is non-hyperbolic only when θ2 > 11 K, as described in Sect. 3.

Some sample points where hyperbolicity was lost are shown in Table 3. These sample states have nonzero
contributions from each variable. Each individual contribution is well within the limits of hyperbolicity that
were described in (21) and Fig. 6, but taken together they lead to a non-hyperbolic state. Therefore, while the
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Fig. 7 Results for a simulation with the imposed source terms (23) that force the system into non-hyperbolic states. (a) Time
evolution of the total energy. (b) Time evolution of the domain-maximum of θ2, which never exceeds ≈ 6 K. (c) Points (x, t)
where hyperbolicity was lost. White squares represent hyperbolic points and black squares represent non-hyperbolic points

results in (21) and Fig. 6 suggest that relatively large values must be reached in order for hyperbolicity to be
lost, it is not excluded that moderate values can lead to non-hyperbolic states when several of the variables are
nonzero. From the different shapes in Fig. 6, it is not hard to imagine that the system can become non-hyperbolic
through more complex configurations of the background state variables.

5 Breaking waves

In this section, nonlinear solutions to the 2MSWE are studied. It will be shown analytically that smooth
initial conditions can break, but there are also exact solutions that do not break. Whether or not a wave
breaks depends on the background state; that is, the characteristic fields of the 2MSWE are neither genuinely
nonlinear nor linearly degenerate over all of phase space. The breaking waves resemble internal bores [24–27].
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The numerical scheme is also tested with breaking waves. After the wave breaks, the numerical front is sharp
and without oscillations, and it continues to propagate and decay as an N-wave [38,39]. A numerical solution
of the dam-break problem demonstrates that the numerical scheme can represent rarefaction waves as well as
linearly degenerate fronts and genuinely nonlinear fronts.

5.1 Simple wave solutions

Now consider the nonlinear 1D 2MSWE (13) written in a quasi-linear form,

ut + A(u)ux = 0, (24)

where u ≡ (u1, θ1, u2, θ2) is a vector solution and A(u) is the corresponding advecting matrix. Here we seek
a simple wave solution of the form [38,50]

u(x, t) = U(σ (x, t)). (25)

Inserting this ansatz into (24) leads to

σt Uσ + σx A(U(σ ))Uσ = 0.

The ansatz (25) will then provide a solution if

Uσ = rp(U(σ ))

U(σinit) = Uinit (26)

and

σt + λp(U(σ ))σx = 0

σ(x, 0) = σ0(x), (27)

where rp and λp are the eigenvector and eigenvalue corresponding to the pth characteristic field. The ordinary
differential equation (ODE) in (26) can be solved on some interval σ− < σ < σ+, within which the initial
data σ0(x) should be chosen. The PDE (27) can then be solved using characteristics:

dσ

dt
= 0 along

dx

dt
= λp(U(σ )), (28)

which are straight lines. It is assumed in this construction that the sytem remains hyperbolic.
The solution is then

σ(x, t) = σ0(x − λp(U(σ ))t) = σ0(α). (29)

This solution is valid until two characteristic lines meet, which will happen at time

T∗ = −1

minx
d

dx λp(U(σ0(x)))
= −1

minx

[
(rp · ∇λp)

dσ0
dx

] . (30)

Note that the simple wave will never break if an initial state is chosen so that rp · ∇λp = 0.
Since the wave-breaking condition (30) depends on whether rp · ∇λp is nonzero, it is useful to define

two common cases: genuine nonlinearity and linear degeneracy [38,50]. For a PDE of the form (24), the pth
characteristic field is said to be genuinely nonlinear in an open set D if

rp(u) · ∇uλp(u) �= 0 for all u ∈ D. (31)

For a scalar conservation law ut + f (u)x = 0, this is the convexity condition f ′′(u) > 0 (or the concavity
condition f ′′(u) < 0). At the other extreme, the pth characteristic field is said to be linearly degenerate in an
open set D if

rp(u) · ∇uλp(u) = 0 for all u ∈ D. (32)
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This condition is satisfied trivially by constant-coefficient linear hyperbolic systems, for which ∇uλp = 0 for
all u. Furthermore, (32) is sometimes satisfied for nonlinear systems; for instance, in gas dynamics, vorticity
waves and entropy waves are linearly degenerate [50].

The 2MSWE are neither genuinely nonlinear nor linearly degenerate over all of phase space. To demonstrate
this, it is shown that, for each of the characteristic fields p, rp · ∇λp is nonzero over parts of phase space
and zero over other parts of phase space. Since analytic expressions are not known for rp and λp, rp · ∇λp
is calculated numerically. Figure 8 shows plots of rp · ∇λp for different points of phase space. Figure 8a
uses points where u2 = θ1 = θ2 = 0 with different values of u1. Note that the states shown in this figure
are all hyperbolic, which is clear for Fig. 8a from the results in (21). The characteristic fields are labelled
p = −1,−2,+2,+1, where the +(−) corresponds to an eastward (westward) phase speed λp, and 1 and 2
refer to whether the eigenvector rp is predominantly in the first or second baroclinic mode. Figure 8a shows
that none of the characteristic fields is genuinely nonlinear over all of phase space, since rp · ∇λp = 0 for
all fields when u1 = θ1 = u2 = θ2 = 0. It is also clear from this plot that none of the characteristic fields is
linearly degenerate over all of phase space, since rp · ∇λp �= 0 for most of the points shown. Figure 8b shows
that the trivial state u1 = θ1 = u2 = θ2 = 0 is not the only point in phase space where rp · ∇λp = 0. This
plot shows states with u2 = 0, θ1 = 4 K, θ2 = 2 K, and different values of u1. Also note that, for each of the
characteristic fields, rp ·∇λp is sometimes positive and sometimes negative. Furthermore, while rp ·∇λp = 0
sometimes, there do not appear to be any open sets in phase space where this is true.

5.2 Simple waves that do not break

Here we illustrate simple wave solutions for the 2MSWE that do not break. For a simple wave u(x, t) =
U(σ (x, t)) to not break, it must satisfy rp(U) · ∇uλp(U) = 0 for all values of σ . To find such a simple
wave solution, one must first find a particular value of Uinit and a characteristic field p for which rp(Uinit) ·
∇uλp(Uinit) = 0. Then, using U(σinit) = Uinit, one must solve (26) over an interval σ− < σ < σ+ to see
if rp(U) · ∇uλp(U) = 0 over that interval. For the 2MSWE, the search for such solutions must be done
numerically because the eigenstructure is analytically intractable. Points in phase space where rp · ∇λp = 0
seem to occur infrequently based on the results in Fig. 8. In principle, one could search all of phase space to
find all of these points, possibly using an iterative method. Here, instead, one family of non-breaking simple
waves is presented as an example.

One family of non-breaking simple waves for the 2MSWE takes the form

u(x, t) = Uinit + rσ(x − λt), (33)

which is a special solution of (26) and (27) with constant eigenvector rp(U(σ )) = r, constant eigenvalue
λp(U(σ )) = λ, and traveling wave solution σ(x, t) = σ(x − λt). In this solution form, Uinit acts as a
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Table 4 Examples of simple waves that do not break

Uinit λ (m/s) r

u1 θ1 u2 θ2 u1 θ1 u2 θ2

0 0 0 0 −50 1 1 0 0
−25 0 0 2 1
+25 0 0 2 −1
+50 1 −1 0 0

0 0 a b 50 ·
(

1√
2

a −
√

1 + 2a2 − 2
√

2b
) λ+ 1√

2
a

−1+2
√

2b
1 0 0

−25 0 0 2 1
+25 0 0 2 −1

50 ·
(

1√
2

a +
√

1 + 2a2 − 2
√

2b
) λ+ 1√

2
a

−1+2
√

2b
1 0 0

These are cases of Uinit , λ, and r for which (33) is a solution to the 2MSWE

background state and rσ(x − λt) as an anomaly, but these are not just solutions to linearized perturbation
equations; these are linearly degenerate solutions to the nonlinear 2MSWE (13). If Uinit is chosen to be purely
second baroclinic, then there is a simple wave of this form for each of the characteristic fields, as shown in
Table 4. The trivial choice Uinit = 0 is a special case and was shown in Fig. 4. Note that, for the purely mode-2
values of Uinit in Table 4, the eigenvector r is either purely mode-1 or purely mode-2. In summary, Table 4
demonstrates that the simple waves for all characteristic fields do not break if Uinit is purely second baroclinic.
On the other hand, if a first baroclinic contribution is included in Uinit, then a breaking simple wave might
exist, which is the topic discussed next.

5.3 Simple waves that break

The results in Table 4 show that a nonzero mode-1 background state is needed for a simple wave to break. One
example of a breaking simple wave was given in the convergence test in Fig. 2, where the background state
was θ1 = 4 K and u1 = u2 = θ2 = 0. As another example of a breaking simple wave, consider a background
state with u1 = 5 m/s, u2 = θ1 = θ2 = 0. The methods described in Sect. 5.1 and Appendix A were used to
calculate “exact” simple wave solutions for this background state. The simple waves of all four characteristic
fields will break with this background state. Figure 9 illustrates the eastward-propagating mode-1 wave, which
has a speed of roughly 50 m/s. Figure 9a shows the background shear, and Figs. 9b and c show snapshots at
times t = 0 and 4 h, respectively, of pressure contours and the velocity field. The velocity field includes the
background state and is shown in a reference frame moving eastward at 12 m/s. The plot at 4 h was shifted
in space to put the breaking wave in the center of the domain. Initially the wave was nearly sinusoidal, but
after 4 h, the gradients of both the pressure and velocity steepen sharply as the solution approaches the wave
breaking time of T∗ = 4.3 h. At t = 4 h, the wave resembles an internal bore (a.k.a. density current or gravity
current) [24–27]. The flow is westward and nearly barotropic in the right half of the domain, and it sharply
veers upward near x = 50 km where it meets the high pressure fluid in the lower left part of the domain. In
the left half of the domain, the flow is mostly baroclinic. The simple waves for the other characterstic fields
(not shown) have similar features but clearly several differences as well due to their different eigenstructures
and propagation speeds.

For simple waves that break, the exact solution is no longer valid after characteristic lines meet. Defining
weak solutions for nonconservative PDE is currently a challenging research topic that is beyond the scope of
this paper (see [40–45] and references therein). Nevertheless, a numerical solution of a breaking wave will be
shown to demonstrate that the numerical scheme proposed here can represent propagating discontinuities in a
reasonable way.

The breaking wave in Fig. 9 was also simulated numerically using the scheme from Sect. 3. The domain
is 100 km wide with periodic boundary conditions, and the grid spacing is �x = 0.1 km. The duration of
the simulation was 36 h, which is roughly eight times the wave breaking time, and the results are shown
in Fig. 10. The time evolution of the energy is shown in Fig. 10a, and the evolution of u1 is shown in
Fig. 10b. The wave propagates eastward at roughly 50 m/s, but the snapshots shown in Fig. 10b were shifted
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Fig. 9 Exact solution of a breaking simple wave in a background shear. The background shear uses u1 = 5 m/s and u2 = 0 (a).
Snapshots of the simple wave are shown at time t = 0 h (b) and t = 4 h (c). This is the mode-1 simple wave that propagates
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to put the discontinuity in the center of the domain. After the wave-breaking time T∗ = 4.3 h, the energy
of the wave anomaly decays to zero over a time scale of ≈ 10 h. Note that the total energy decays to a
nonzero value corresponding to the energy of the background shear, u1 = 5 m/s. The energy here serves
as a convex entropy function, and the breaking wave takes the form of a decaying N-wave. This example
demonstrates that the numerical scheme can represent propagating discontinuities without introducing spurious
oscillations.

5.4 Dam-break problem

To illustrate a more complex situation with discontinuities, the well-known dam-break problem [38,39] is
solved numerically with the scheme described in Sect. 3. Initially the flow is at rest (u1 = u2 = 0), and there
is a jump in potential temperature at x = 0 with cold air to the left:

θ1(x, 0) =
{−10 K for x < 0

0 K for x > 0

and θ2 = 0 over the whole domain initially. The grid spacing used is �x = 0.5 km.
Figure 11 shows the solution after 2 h. The solution consists of four waves, with two propagating westward

and two propagating eastward. Table 5 lists the propagation speed of each wave and the wave type based
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on the wavespeeds of the neighboring states. For instance, the leftmost front propagates into the cold region
at −57.6 m/s, which is intermediate between the wavespeeds of the states to its left and right (−52.5 and
−61.9 m/s, respectively). This is consistent with Lax’s stability criterion for propagating fronts [38,39,50,51].
Therefore, this wave is identified as a genuinely nonlinear breaking wave. Also identified in Table 5 are a
rarefaction fan and a linearly degenerate wave, while the fourth wave appears to be nearly linearly degenerate.
This example shows that the numerical scheme can represent a variety of nonlinear waves: genuinely nonlinear
waves, linearly degenerate waves, and rarefaction fans.

6 Waves generated by thermal forcing

In this section, an important example from the tropical atmosphere is studied where gravity waves propagate
through background wind shears. When convective clouds form and decay, condensational heating excites bore-
like gravity waves that propagate away from the cloud. These waves play an important role in suppressing
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Table 5 Numerical solution of the dam-break problem

Front/fan location (km) Propagation Relevant wavespeeds of neighboring Wave type
at t = 2 h speed (m/s) states to left and right (m/s)

−420 −57.6 −52.5 and −61.9 Genuinely nonlinear
−150 −20.5 to −19.3 −20.6 and −19.1 Rarefaction

170 24.6 24.6 and 24.4 Nearly linearly degenerate
370 50.9 50.9 and 50.9 Linearly degenerate

List of the four waves that emerge from the initial jump, along with the propagation speeds of the waves and the probable wave
type. The probable wave type is inferred from the front speeds shown here and the wavespeeds of the neighboring states to the
left and right of the front
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Fig. 12 Vertical profile of the heating (34) used to generate the waves shown in Figs. 13–15

or promoting new convection in the vicinity of the pre-existent cloud. For simplicity, previous studies have
examined these waves as they propagate through a motionless environment [10,52–55]. However, tropical
convection often forms in environments with vertical shear of the horizontal winds [16,28,29], and it is often
not spatiotemporally isotropic but organized by waves on larger scales [7,8,16]. In order to understand how
convection is organized on larger scales, it is important to study how the bore-like waves are affected by a
background wind shear. This is the topic of this section.

To generate the bore-like waves, a localized heat source is turned on at time t = 0 and left on for the
duration of the simulation, unlike the situation in (23). This is meant to represent heating from cloud formation
[10,52–54]. The heat source takes the form

Sθ1(x, t) = a exp

(
− (x − x0)

2

2σ 2

)
, Sθ2(x, t) = −1

4
Sθ1, (34)

where the heating is centered in the middle of the domain at x0 = 1, 000 km, the standard deviation is
σ = 20 km, and the amplitude is a = 200 K/day ≈ 8 K/h. The vertical profile of this forcing is shown in
Fig. 12. It is a top-heavy heating that represents a combination of stratiform and deep convection (whereas
the case in (23) was bottom-heavy, representing a combination of congestus and deep convection). The grid
spacing is �x = 2 km on a 2,000 km-wide domain.

Before considering the nonlinear case with a background shear, a motionless background state u1 = u2 =
θ1 = θ2 = 0 is considered for comparison. To further aide comparisons, the case with a motionless background
state is shown for both linear dynamics (Fig. 13) and nonlinear dynamics (Fig. 14). Snapshots of velocity
and potential temperature are shown at time t = 4 h. The mode-1 heating forces a mode-1 bore that travels at
50 m/s and reaches x = 300 and 1, 700 km at t = 4 h. At the front, the mode-1 bore has downward motion
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Fig. 14 Same as Fig. 13 except the nonlinear dynamics of the 2MSWE (13) are used

throughout the troposphere due to (8):

w j (x, t) = −1

j
∂x u j (x, t), W (x, z, t) = w1(x, t)

√
2 sin(z) + w2(x, t)

√
2 sin(2z).

Associated with this subsidence is adiabatic warming, which appears as the term W dθbg/dz in (1), and which is
seen as the warming in θ1 by 1.2 K following the passage of the mode-1 front. In a realistic situation with water
vapor, this subsidence warming would cause a decrease in the convective available potential energy (CAPE)
and stabilize the atmosphere for deep convection [3]. In this way, the mode-1 bore suppresses the formation of
new convection. On the other hand, the mode-2 bore has the opposite effect: it tends to promote convection.
The mode-2 heating forces a mode-2 bore that travels at 25 m/s behind the mode-1 bore and reaches x = 650
and 1,350 km at t = 4 h. At the front there is upward motion at low levels, from which the low levels are
cooled adiabatically. This is seen as the jump in θ2 of −0.6 K as the mode-2 bore passes. Thus the mode-2 bore
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tends to promote new convection in the vicinity of the existing cloud by increasing the CAPE at low levels.
These are the basic mechanisms of the mode-1 and mode-2 bores which are believed to play a central role in
suppressing and favoring convection, respectively [10,16,52–55].

When the nonlinear dynamics of the 2MSWE (13) are turned back on (but still with a motionless background
state), the mode-1 and mode-2 responses are mixed, as shown in Fig. 14. The 25 m/s bore is now reinforced by
a mode-1 response as well, but the 50 m/s bore is almost purely first baroclinic. Although the mode-1 and -2
reponses are now mixed, the effects are minor so that the previous discussion applies.

However, when both the nonlinearities and a non-zero background shear are included, the structure of
the traveling bores becomes spatially asymmetric: the waves to the east and west of the source are no longer
the same. This is demonstrated in Fig. 15, which was initialized with a background shear of u1 = +10 m/s
and u2 = −10 m/s, illustrated in Fig. 15e. This shear profile was chosen to represent typical conditions in
the westerly wind burst stage of the convectively active phase of the Madden–Julian oscillation, with strong
westerlies at low- and mid-levels and easterlies at upper levels [56,57]. With this background shear, Fig. 15
shows that the area to the west of the source is more favorable for convection than the area to the east of
the source. The vertical profile of potential temperature is shown in Fig. 15f for four different states at time
t = 4 h. At x = 800 km, after the westward-propagating mode-2 bore passes, the atmosphere is in a state
that is favorable for convection, with � < −1 K at low levels. To the east of the source, however, after the
mode-2 bore passes, the atmosphere is in a state that is less favorable for convection, with � ≈ 0 at low
levels and � > 3 K at upper levels. A detailed observational and computational study [57] of the westerly
wind burst phase of the Madden–Julian oscillation has new organized convection always appearing westward
of pre-existing organized convection, which agrees with the idealized study of the present paper. Thus, these
effects might be important for the large-scale organization of convection.

7 Conclusions

A new set of PDE, the 2MSWE, were derived to capture the nonlinear interactions of gravity waves with
different vertical profiles. The nonlinearities allow for waves interacting with a background wind shear, which
is an important feature for many applications in the atmosphere. The nonlinear waves were shown to resemble
internal bores, and the behavior of the waves was investigated for different background wind shears. When a
background shear was included there was a pronounced asymmetry in the westward- and eastward-propagating
waves. An idealized study of this asymmetry (Fig. 15) in the westerly wind burst phase of the Madden–Julian
oscillation produced a result in qualitative agreement with observations [57]; namely, new organized con-
vection appears westward of existing organized convection in this jet shear. The westward-propagating waves
produced an environment that is more favorable for convection than that produced by the eastward-propagating
waves. This might be an important mechanism in the large-scale organization of tropical convection, since the
convection is often not isotropic but organized on large scales by waves.

The 2MSWE were shown to have several interesting mathematical features: they are a system of noncon-
servative PDE with a conserved energy, they are conditionally hyperbolic, they are neither genuinely nonlinear
nor linearly degenerate over all of phase space, and breaking waves can form from smooth initial conditions.
Theory and numerics were developed to illustrate these features. When hyperbolicity is lost, the unstable
waves have an overturning circulation that transports warm air upward to stabilize the system. Hyperbolic
travelling waves were shown to be exact solutions to the nonlinear equations provided the background state
is purely second baroclinic. Such waves are linearly degenerate and do not break. In other cases, when a first
baroclinic background state was present, several examples of breaking nonlinear waves were given. These
are genuinely nonlinear waves that break, and they resemble internal bores (a.k.a. density currents or gravity
currents) [24–27].

Due to these features of the 2MSWE, designing a numerical scheme for them is a challenge. A numerical
method was presented in Sect. 3 with simplicity and minimal computational cost as the main design principles.
The non-conservative system is split into a conservative part and a non-conservative part. The conservative
part is solved by a standard non-oscillatory central scheme [46,47], and the non-conservative part, which has
a nilpotent advection matrix, is handled by a simple centered differencing scheme. The scheme was tested in
Sects. 4 and 5. When external source terms were applied to force the system into non-hyperbolic states, no
catastrophic effects were introduced when hyperbolicity was lost, and the numerical solution did not seem
to stray far from the hyperbolic region. When tested on breaking waves, the numerical scheme produced
propagating discontinuities without introducing spurious oscillations. A numerical solution to the dam-break
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problem demonstrated that the scheme can represent a variety of nonlinear waves: genuinely nonlinear waves,
linearly degenerate waves, and rarefaction fans. These tests show that the numerical method can handle a
variety of situations including non-hyperbolic states, nonlinear waves, and intense source terms.

Given the results shown here, the 2MSWE should be useful as a dynamical core for models that include
the effects of water vapor and convection as interactive source terms [18–23]. For instance, this nonlinear
dynamical core is important for the interactions of background wind shear with squall lines and mesoscale
convective systems. The authors are currently pursuing this direction, and results will be presented elsewhere
in the near future.
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A Appendix: Numerical methods for simple waves

In Sect. 5, we introduced the simple wave solutions for the two-mode-shallow-water system in (13) and showed
how such solutions are constructed by solving the ODE (26) and the scalar PDE (27). In this appendix it is
shown how (26) and (27) are solved numerically to obtain the “exact” solutions shown in Figs. 2 and 9.

First, the ODE (26) is solved. Discrete points (20,000 of them) are placed uniformly over the domain from
x = 0 to 100 km, and σ0(x) is chosen to be a sinusoid with amplitude σamp. This defines a set of discrete
values of σ in the interval −σamp < σ < σamp with U|σ=0 chosen to be the background state (θ1 = 4 K for
Fig. 2 and u1 = 5 m/s for Fig. 9). A value of σamp = 2 m/s was used in Fig. 2 and σamp = 1 m/s was used in
Fig. 9. The characteristic field (rp, λp) chosen in each case is the one with a characteristic speed of roughly
+50 m/s. The solution of the ODE (26) then gives the value of U for each of the 20,000 discrete values of σ ,
given its value at some initial point σ j0 .

Second, the scalar PDE (27) is solved using characteristics as described in (28). This can be done to give
an “exact” solution to the 2MSWE that is valid until the wave breaking time given by (30).

The wave breaking time given in (30) takes a simple form if two assumptions are made. First, the ODE
(26) allows one to choose a normalization of rp. Here rp is normalized by requiring

rp · ∇λp = 1, (A1)

assuming that rp · ∇λp > 0 or < 0 for all U in some region of phase space. With this normalization, it follows
that

dλp

dσ
= rp · ∇λp = 1, (A2)

so that

λp = λ0
p + σ, where λ0

p = λp|σ=0. (A3)

The PDE for σ in (27) then takes the form of Burger’s equation,

σt + (λ0
p + σ)σx = 0, (A4)

and the wave-breaking time T∗ also takes the simple form

T∗ = −1

minx
dσ0
dx

. (A5)

As the second simplifying assumption, as mentioned above, the initial conditions for σ0(x) are chosen to be
sinusoidal,

σ0(x) = σamp sin(kx), (A6)

so that the wave breaking time is simply

T∗ = 1

σampk
. (A7)

For Fig. 2 with σamp = 2 m/s, the wave breaking time is T∗ = 2.15 h, and for Fig. 9 with σamp = 1 m/s, the
wave breaking time is T∗ = 4.3 h.
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